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Problem Statement

* Prognostics

— Investigate algorithms that allow prediction of the time at which a component will
no longer perform a particular function

— Lack of performance is most often component failure
« The predicted time becomes then the “remaining useful life” (RUL)

« State-of-practice and state-of-art

— Data-driven techniques for prognostics based on machine learning

« Statistical extrapolation
— Polynomial regression

» Probabilistic techniques
— Gaussian process regression
— Relevance vector machine

* Neural networks
— Model-based approaches slowly getting more traction

* Improved understanding of the systems
« Enhanced computational capabilities

« Challenges
— Absence of sufficiently large data sets
— Uncertainty management
— Performance assessment
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IVHM milestone

The work is performed under task 1.2.3.2 “Develop and evaluate
data-driven, physics-based and hybrid prognostic models and
methodologies.”

— Data-driven techniques investigated
« Gaussian Process Regression
» Relevance Vector Regression
* Neural Networks
« “Standard” regression techniques

— Model-based techniques

* Variations of Kalman Filters
— Extended Kalman Filters
— Unscented Kalman Filters

* Variations of Particle Filters
— Rao-Blackwellized Particle Filter
— Fixed Lag Particle Filter
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Background:
Data-Driven Modeling

Use run-to-failure data sets representing a range of operating
conditions and fault modes

Develop damage propagation model

— by using suitable features and

— learning characteristics such that one can
] o o ) Perform regression to map features
+ determine remaining life in a partial data set to damage

Advantage v

— No need to have a deeper understanding of the underlying physics of @
the process

Perform extrapolation to damage

Limitations limit

Estimated future damage

Take difference between threshold
crossing and now

Estimated Remaining life

— Sufficient amounts of data for learning are hard to come by
« Particularly for new systems

*  Or “fleets of size one”

— Low confidence predictions

» Rigorous integrated methods for uncertainty management not available

— Methods often break under unexpected (unseen) situations
» Changes in environmental and operational conditions
* Material or process variations
* Maintenance operations, self healing phenomena, etc.
— Difficulty comparing results from different approaches
* Lack of metrics
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Background
Physics-Based Modeling

Physics-based model of system

— Describe the dynamics of the system under nominal operation using first
principles (or other physics-based techniques)

Physics-based damage propagation model
Prediction algorithm

System receives Estimate current

inputs, produces

state and parameter
outputs

values

Fault Detection F
) P(Xk-LIYo:6) . P(EOLi-L|Yo:x)
Isolation & —» Elsjt?nr?:ggn #» Prediction e
Identification Yk P(RULyL|Yo:x)

+ +

Identify active Predict EOL and

RUL as probability

damage = PTER
distributions

mechanisms
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Approach: Particle Filtering

« Particle Filter offer a Bayesian framework that allows estimation
of current state of damage and then propagate the damage into
future without simplistic assumptions of Normality and model
linearity in a rigorous statistical manner.

« Salient features of Particle Filters
* Model adaptation
« State estimation, tracking and prediction
* Nice tradeoff between MC and KF
« Useful in both diagnostics and prognostics
* Represent uncertainty
« Manage uncertainty
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Approach: Particle Filtering

* Propagates particles (damage estimates) several steps ahead maintaining
the statistical properties of the evidence (measurements) and
characteristics of the dynamical system model

P(x) « Process steps:
— represent state as a pdf

— sample the state pdf as a
set of particles and

X l L associated weights

e — propagate particle values

P : “’ according to model
t, [ t — update weights based on
measurement
e actual state value  ----- actual state trajectory
x measured state value estimated state trajectory — Repeat all steps above to
e state particle value particle propagation propagate to next time
state pdf (belief) — particle weight Index
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Approach: Particle Filtering

e A particle filter iteratively approximates the posterior pdf as a
set:

S, ={(X\, Wy )i =1.....n}

where: p(Xk | Zlk) Zwk5(xk Xk)
X! is a point in the state space
w,! is an importance weight associated with the point
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Approach: Particle Filtering

e Prediction step: use the state update model

PO 1 Zus 1) = [ PO X 1) POy [ 2 1)

e Update step: with measurement, update the prior using
Bayes' rule:

P(Z [ X ) P(Xy | Z14 1)
p(zk | Zl:k—l)

p(xk | Z1:k) —
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Approach: Particle Filtering

Initialize PF
Parameters

v
Propose Initial Population , <x,,w,>

A 4

Propagate Particles using State
Model , X, ;=2 X,

A

A 4

Update Weights, w, 2w,

Measurement /
Zy

A 4

Weights degenerated? N

Yes

Resample
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Approach: Resampling

Particle weights degenerate over time
— measure of degeneracy: effective sample size

Ngy =1/ Z (W||< )?
i1

<— use normalized weights

1<Ng <n

— resample whenever Ny <Ny,
new set of particles have same statistical properties

CSW
R . -1 8
(]

>

I— 3

i ix =

{x.,w }<={x 1/n} S

wy Ui §

=

S

0 v 0 5

particle index
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Damage Growth Modeling

« Traditionally population growth models have been used for damage growth

modeling AR
. ty= Aexp{—}
— Arrhenius Model kT
— is’ d
Paris’ Model ﬁ _ OAK™

— Coffin-Mason model

« Exponential based models
— Explain general trend of fault growth

— Fail to model several phenomena in different growth regimes

» Fault growth characteristics change with the age of the system
— Permanent wear sets in as batteries age and hence discharge dynamics changes

N, = Af~AT*G(T..)

» Self healing characteristics
— Batteries recuperate charge when allowed to rest
— Crack closure phenomenon tends to reduce effective crack size momentarily

— Maintenance operations increase engine efficiencies

« Physics based models can incorporate multiple physical phenomena that
actually take place and affect fault growth / ageing

 These models can be semi - empirical yet incorporate heuristics improving
the accuracy and confidence in the predictions
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Hardware-in-the-Loop Test Bed

« Prognostics HIL test bed

To test prognostics algorithms with hardware in the loop
That mimics the complexities and issues encountered for a real system

« Such a system will support

Collection and dissemination of run-to-failure data
Development of metrics for prognostics

Algorithm development

Benchmarking of different approaches

Testing and validation of prognostic tools

* Requirements

Complexity high enough to showcase capabilities of more advanced algorithms
Can be failed in a safe manner

Aging process is repeatable

Small in size and cost effective

Aging dependency on environmental variables

Aging dynamics slow enough to be observable and fast enough for reasonable
run-to-failure times
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Hardware-in-the-Loop Testbed

Cells are cycled through charge

and discharge under different load Em —
. ., . gL Qo QE_J 00|00
and environmental conditions set chas N bondba

by the electronic load and
environmental chamber
respectively

Periodically EIS measurements
are taken to monitor the internal
condition of the battery

DAQ system collects externally
observable parameters from the
sensors

Switching circuitry enables cells to
be in the charge, discharge or EIS
health monitoring state as dictated
by the aging regime

EE]) s
]

Switching/DAQ AN

current I
data -
control =

- Cells

Component
Box

_ |

> Environmental
Chamber

EIS: Electro-chemical Impedance Spectroscopy
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Frequency Domain Modeling for Batteries

Different aging effects have different signatures in the frequency domain

analysis
(ﬁL « Electrolyte weakening causes increase in
1 electrolyte resistance, Rg
—MA(—O « Passivation impedes charge transfer across
Re the solid-electrolyte interface (SEI), which
rY rY shows up as an increase in Rqt

% 1 60% SOC EIS Impedance at 5 mV (0.1-400 Hz)
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Approach: Modeling
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Approach: Modeling Damage Propagation

Obijective: Predict when Li-ion battery voltage will dip below 2.7V
iIndicating end-of-discharge (EOD)

Approach
Model non-linear electro-chemical phenomena that explain the

discharge process

Learn model parameters from training data
Let the PF framework fine tune the model during the tracking phase

Use the tuned model to predict EOD

EO

voltage ——>

o g = e, L
~C s —.aL L

...\.}‘--.....--......----.....--......----.....----...---......--‘-\5-\-:'\'. """""""" A 'Eo_Emt

\\~
e
~——
______
____________________

mt: mass transfer E=E°-AE -AE -AE
sd: self discharge sd —rd —m
rd: reactant depletion

t

time —>
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Approach: Modeling State of Life (SOL)

Objective: Predict when Li-ion battery capacity will fade by 30%

Indicating life (End-of-Life)

Approach
Model self-recharge and Coulombic efficiency that explain the aging
process

— Learn model parameters from training data

— Let the PF framework fine tune the model during a few initial cycles

— Use the tuned model to predict EOL

100 R
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Results: Prognostics in Action
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Results: SOC Prediction
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Results: SOL Prediction
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Uncertainty Reduction using RBPFs

« Domain knowledge can used in a Rao-Blackwellized Particle Filter (RBPF)
to make the state estimate partially deterministic, thus reducing uncertainty

Linear Fit on C/1 capacity vs. R.+R.;

Training@25° C, Testing@45° C
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Summary and Conclusions

Presented work on algorithm development and model building for
prognostics

Empirical model to describe battery behavior during individual discharge
cycles as well as over its cycle life

Model has been tested using experimental data

Model has been used in a PF framework to make predictions of EOD and
EOL effectively

Algorithms have been tested on other models

Model can be applied to other battery types as long as effects specific
to those chemistries are modeled as well (e.g. the memory effect in Ni-
Cd rechargeable batteries)

The PF prognosis framework allows explicit representation and
management of uncertainty with mathematical guarantees of
convergence

HIL testbed built that allows assessment of different prognostic
algorithms

Data sets available at https://dashlink.arc.nasa.gov/data/li-ion-battery-aging-datasets
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Next Steps

Assess impact of model fidelity improvement

— Explicitly incorporate influence of factors like
 Temperature
* Load
» Magnitude of Cycles
» State of Charge (SOC) after charging

Advanced filtering techniques (after the factors above are
understood)

— unscented PF
— Rao-Blackwellized PF

Explicitly assess impact of future load variations
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